MAY

HELLO PEOPLI, '

Another 1ssue of CLOAD Magazine has managed to wend its path from
concept to reallty. We think you'll like this one, were back to a C-30
cassette, and we have got more programs, so we had to cut short on the
audlo portion. We're also putting a label on both sldes starting this
monith, and with our luck, we'll probably put them on backwards. Bear
with us a tad longer, while we attempt to get our act together. We've
recovered from the April flasco wlth only minor damage, and are back on
the track towards our goal of "first of the month".

Last month, we had some data on the tape which caused a bit of con-
fusion to some of our subscribers, 1n that it would load, but it would
not run, nor would 1t 1list. That's right folks, 1t was not a program.

For those of you who are not famlliar with the technlque, the black us-
ers manual has an appendix on saving data on cassette tape. We had data
"hlock" prepared for this month's graphing program, but we decided not
to put 1t 1in, because our mass duplicators had a hard tlime with Aprll's
data block., Regret the decision, as 1t was a beautliful drawlng.

Two problems have come up with Level I/Level II conversilon, and I1'd
like to talk a blt on them. The first 1s that in Level I, the "A" array
does not to be "demensioned". In Level II 1t does. In the future we'll
put a "REM" statement In the filrst few lines of each program, explalning
the necessary change. The other problem 1lnvolves the way that we declde
whether a user has answered "yes" or "no", (or sand, gravel, brick, etc.).
Level II does this differnetly, and to be upward compatible, 1n the fut-
ure we'll be publishing programs which use a different technique. Example:
Do you want to play agaln (l=yes, 2=no)? Agaln for %hose concerned future
programs will be readable in Level IT,

On to other things, thils last weekend, yours truly was involved in
two programs which 1llustrate the abllity to use the TRS-80 for serious
applications. The first was a program which selected varlous combinations
of gears to cut a particular helix on a lathe., The programmlng techniqgue
was to plck a glven comblnatlon of gears and lever settings, compute the
pltech of hellix that would"be cut 1f those settings were used, and com-
paring that to the desired pitch. If they were 1n a certaln tolerance,
the results were put on the screen, Then another comblnation was selected
and the process was repeated. The program continued untll all combinatlons
were selected, and the "best" comblnation was selected Crom those displayed.

The second application was simllar, it involved converting an "english"
lathe to cut metric threads 1n 1t, the leadscrew speed was altered through
pear selection , and the entire exlsting thread chart was recomputed to show
the affect of the change. Certaln ratlos yellded many correct metrlc set-
tings, others did not. The desirable charts were selected by Inspection.

It turned out that the range of Interest could be achelved with about nine
new gears. The overall savings, amounted to several tlmes the cost of the
computer. Those who have attemped to do this "by hand" might find 1t in-
teresting that the entlre process (including writing the program) took about
four hours and was a lot of fun.

My last tople this month is to start a continuing series on '"what's
going on in there"- 1insight on the inslde of a TRS-80 as 1t were. At first
, I'11 be explaining various "buzzwords" and then putting them 1nto perspec-
tive with the design of the TRS~-80. By the time the series 1s finished, the
computer wlll be obsolete and we can all start over again.

This month's buzzword 1s "byte" we start by explalning bits. "Bit"'is
a contraction for binary dliglt. The blanary number system, based on 0 and
1, 1ls easy for a machine to work with, as 1t only has to recognlze two "sta-
tes" (on or off, high volume or low volume, etc). The trouble is, a one bil-
anary diglit number doesn't carry much Information. As we humans think of
it, just two patterns, 0 and 1, so we stack them together, and make the com-
puter work wlth many at once. If a four blanary dlglt number is used as
our baslc chunk of informatlon, we have sixteen possible patterns from 0000
to 1111 which can stand for sixteen different people, sixteen different peo
ple, sixteen different recipes, sixtten different commands, etc. Such a
pattern width is called a "four blt word", a "hex dlgit", a "half byte" or
a "nibble" (Honest). That's better than two patterns, and allows us to
juggle greater concepts than "democratic" or "republican", but humans aspilre
to unimaglinable helghts. If we choose an elght binary diglt number, we have
256 distinctive patterns from 00000000 to 11111111, This can stand for 256
different recipes, etc. Thils wide a chunk 1s called a "byte". Remember: A



nibble 1s a hex diglt is a four bit word, but a byte is a byte. Nobody
knows why 1t 1s called that, but nobody calls 1t anything different. So
what ? A sixteen binary diglt chunk has 65,536 patterns possible., Why
not use 1t? Because for most things 1t's a blt to large and unwleldy.
How about a twelve bit chunk? Well, the good ole PDP-8 (a very nilce
computer from Digital Equlpment Corp.) used a 12-blt chunk, and 1t worked
just flne. However, fashions and popularlty and all that work in the
computer field as anywhere else, and a general tradeoff has occured with
the "byte" chunk the winner. So people tend to talk of bytes. If they
need 16 bits, they use two bytes. There talking about 64 bits , they
speak of 8 bytes instead. Remember we sald a byte could store up to 256
~different patterns? Well, 1f we lgnore about 200, or so, we can let each
remainlng pattern stand for a letter of the alphabet, or number or punc-
tuatlon mark.

And that folks, 1s why your program 1ls so many "bytes" long. We use
one byte of storage for every letter, number, or punctuation mark, when
we store 1t in "user memory space" (whatever that is)

Cogito, Ergo Hackum...

D71 <t

RD McElroy
Publisher



